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Fig. 4. Illustration of the projector-based quantization setup. In (a) an example
two-port problem is shown, while in (b) artificial boundaries and equivalent
currents are introduced to separate the regions of the problem.

electromagnetics methods [34], and mode matching methods in
general [35], [36]. To help guide the discussion, an illustration
of the problem setup for this quantization approach is shown
in Fig. 4. In Fig. 4(a), the original problem is shown with two
reference planes for ports identified. The true fields in all regions
of the problem are ET and HT . Now, the regions of the problem
are separated by introducing perfect electric conductor (PEC) or
perfect magnetic conductor (PMC) boundary conditions in the
simulation domain at all port interfaces, as shown in Fig. 4(b). To
maintain the hermiticity of the entire problem, complementary
conditions are used to close the port region problems [26].
That is, if a PMC condition closes the simulation domain the
corresponding port is closed with a PEC condition, as shown in
Fig. 4(b).

The artificial “closing” surfaces lead to discontinuities in
the electric or magnetic fields at these locations that should
not be present from the original problem shown in Fig. 4(a).
To produce the correct fields within the simulation domain,
equivalent electric or magnetic current densities are introduced
at the closing surfaces. For instance, if a PMC condition is
applied at a region of the simulation domain (c.f. ∂Q ∩ ∂P1

in Fig. 4(b)), the resulting discontinuity in the magnetic field is
compensated with an equivalent electric current density given by
Jeq,p = n̂p ×HT . Here, n̂p points into the simulation domain
and HT should be expanded in terms of the port modes to
tie the two problems together [33]. Similarly, to produce the
correct fields within the corresponding port region, an equivalent
magnetic current density given by Meq,p = n̂p ×ET must be
introduced in the port region (c.f. ∂Q ∩ ∂P1 in Fig. 4(b)). Here,
ET should be expanded in terms of the simulation domain modes
and the unusual sign in the definition ofMeq,p is due to the fixed
polarity of the unit normal vector n̂p.

From this physical picture, we see that the interaction between
the simulation domain and port regions can be achieved by

introducing equivalent current densities. Considering, for now,
only closing the simulation domain with PMC conditions, aJeq,p

will need to be introduced at each port in the simulation domain.
In Lagrangian/Hamiltonian treatments of electromagnetics, the
interaction between a current J and the field is typically given in
terms of the vector potential as A · J [17]. Hence, our resulting
Hamiltonian should be

HF =
1

2

∫∫∫ 

ε|Eq|2 + µ|Hq|2 +
∑

p∈P

[
ε|Ep|2

+ µ|Hp|2
]
−

∑

p∈P
2Aq · (n̂p ×Hp)



 dr, (45)

where a subscript of q (p) denotes that the term is associated
with the simulation domain (ports). Further, the term n̂p ×Hp

is an equivalent electric current density (with n̂p pointing into
the simulation domain). The more general case involving both
artificial PEC and PMC conditions will be handled in Section VI,
where it will also be shown that this Hamiltonian produces the
correct equations of motion (i.e., Maxwell’s equations fed by
electric and magnetic current sources).

Inspecting the coupling term in (45), we see that it has been
written from the perspective of treating the port fields as a source
to the simulation domain. It is of course possible to also look at
the Hamiltonian from the alternative viewpoint that the ports are
being fed by a current density. This is done by rearranging the
coupling term to be Hp · (Aq × n̂p), which shows the magnetic
field coupling to a term that is proportional to aMeq,p. Although
difficult to see at this point, this coupling term will produce
the correct form of Maxwell’s equations with a Meq,p acting
as a source to the port field equations. This will be shown in
Section VI.

With the Hamiltonian formulated, the modal expansion of the
fields needs to be revisited. By construction of the problem, a
complete set of modes can be found in each region to expand the
fields in a piecewise manner. Hence, we have that the simulation
domain electric field is

Eq(r, t) =
∑

k

√
ωk

2ε0
(qk(t)Ek(r) + q∗k(t)E

∗
k(r)) (46)

and the port region electric fields are

Ep(r, t) =
∑

λ

∫ ∞

0
dωλp

√
ωλp

2ε0
(qλp(ωλp, t)Eλp(r,ωλp)

+ q∗λp(ωλp, t)E
∗
λp(r,ωλp)

)
. (47)

In (46), the summation over k represents a discrete spectrum of
modes with eigenvalue ωk for the region Q. In (47), the index p
is used to differentiate the different ports in the set P . Each
port can support different transverse modes (e.g., transverse
electromagnetic or transverse electric), which are differentiated
by the discrete index λ. Due to the semi-infinite length of the
port regions, each transverse mode will also support a con-
tinuous spectrum. Hence, the integration over the eigenvalue
ωλp can be interpreted as “continuously summing” over the
one-dimensional continuum of modes for each transverse mode.
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Fig. 14. Geometry and electric surface current density at 10THz for the SRR
array in Section IV-D.

TABLE II
DIMENSIONS AND ELECTRICAL PROPERTIES OF EACH SPLIT RING IN THE SRR

ARRAY IN SECTION IV-D. SPLIT RINGS ARE LABELED BASED ON THE TOP
PANEL OF FIG. 14, AND h DENOTES THEIR HEIGHT

may be encountered in the design and analysis of multiscale
electromagnetic surfaces.

As shown in Fig. 14, the structure contains four variations of
unit cells. The geometry of each unit cell is identical except for
a scaling factor. The top panel of Fig. 14 defines the pertinent
dimensions of a single unit cell, and also shows the placement of
each of the four variations of unit cells within the full array. The
variations are labeled, from the smallest to the largest unit cells,
as “SRR A,” “SRR B,” “SRR C,” and “SRR D”. Table II provides
the dimensions for each unit cell variation. Some unit cells are
made of dielectric materials, while others are conductive, and
the material parameters are listed in Table II. The background
layered medium is described in the third column of Table I.
The bottoms of all SRR unit cells are aligned at z = 0, which
coincides with the interface between the first (top-most) and
second dielectric layers. The structure is meshed with 103 568
triangles, and is excited with a plane wave with the electric field
oriented along the y axis, traveling in the −z direction.

Fig. 15 shows the electric field magnitude at 1THz for the
proposed method, compared to the eAEFIE, measured along
the probe line shown in Fig. 14. The proposed method is in
good agreement with the eAEFIE. The top panel of Fig. 16
shows that the proposed method and the eAEFIE [21] converge

Fig. 15. Magnitude of the electric field along a probe line for the SRR array
in Section IV-D, at 1THz.

Fig. 16. Performance comparison for the SRR array in Section IV-D.
Top: GMRES iterations. Bottom: total CPU time per frequency.

within a reasonable number of GMRES iterations over a broad
frequency range, from 1 GHz to 10 THz. The GIBC [15] and
SLIM [19] formulations did not converge within 1 000 iterations
for any of the frequency points considered. We were unable to
simulate this structure in HFSS or Feko within the available
256 GB of memory. Among all frequency points simulated,
the proposed method required at most 23 “nested” iterations
for solving (10). The bottom panel of Fig. 16 shows the total
CPU time per frequency, showing the significant computational
advantage of the proposed formulation compared to the eAEFIE.
The proposed method yields an overall 5.9× speed-up com-
pared to the eAEFIE formulation, reducing the total simulation
time from 4.6 days to 18.9 hours. The cost of computing the
double-layer potential operator in the eAEFIE is particularly
disadvantageous in this case, due to the intricate and dense
nature of the structure. In this case, the proposed method re-
quired 154GB of memory at most, while the eAEFIE required
122GB, because the structure contains several large unit cells.
The memory usage is still comparable between the two methods.
Fig. 17 shows the breakdown of the total CPU time per fre-
quency, again demonstrating the significant impact of avoiding
the double-layer operator for the external region.

In summary, the numerical tests considered in this section
exemplify several applications where the proposed formulation
can be a compelling alternative to existing techniques, such as
the GIBC [15], SLIM [19] and eAEFIE [21], [22] formulations.
The proposed method yields a well-conditioned system matrix
while avoiding the double-layer potential operator in the external

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on January 18,2022 at 19:31:25 UTC from IEEE Xplore.  Restrictions apply.

S. Sharma, P. Triverio, "A Single-Layer Dual-
Mesh BEM for Multiscale Electromagnetic
Modeling of Penetrable Objects in Layered
Media”, 2021.

Multiphysics modeling

M. Lodi et al, "Multiphysics Model for Bone
Repair Using Magnetic Scaffolds for
Targeted Drug Delivery”, 2021.

Review papers

K. Niknam, J.J. Simpson, "A Review of Grid-Based, 
T-D Modeling of EM Propagation Involving the
Ionosphere”, 2021.

218 IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, VOL. 6, 2021

Fig. 2. The computational grid used by Simpson and Taflove [64] as seen in a
TM plane at a constant radial coordinate. The cells approaching the polar regions
are merged to provide a nearly uniform spatial resolution across the whole grid,
and correspondingly, to keep the temporal resolution of the model at the level
of the Courant limit (figure courtesy of [1]).

dispersive plasma. The proposed model was based on the auxil-
iary differential equation FDTD (ADE-FDTD), and was orig-
inally developed to treat any dispersive media. This method
became unstable when the plasma was collisional. Another
model for wave propagation in an isotropic, collisionless (but
warm) plasma was presented by Young, using the joint equations
of Euler and Maxwell [25]. In an attempt to improve these two
methods, Cummer introduced an exponential fitting to ADE-
FDTD to simulate EM wave propagation in unmagnetized cold
plasmas [77]. This method generates higher-accurate results, is
applicable to a wider range of plasma parameters compared to
the previous approaches.

Two separate groups developed the first annular 3-D models
of the global Earth-ionosphere waveguide. In both [64] and
[78], the ionosphere is modeled as an exponential profile of the
atmospheric conductivity. The model developed by Simpson et
al. uses a technique of merging cells as either Pole is approached
to keep the temporal resolution of the model at a level closer to
the Courant limit (see Fig. 2).

Several other global 3-D models have subsequently been
presented by other groups that also employ isotropic conduc-
tivity profiles for the ionosphere. For example, a global, 3-D
geodesic model comprised of hexagonal and pentagonal cells
was developed [79]. This geodesic-grid model outperforms the
3-D latitude-longitude model [64] in many aspects; in particular,
it is faster and easier to implement and parallelize. Similar
models may be found in [80]–[83]. Reference [15] summarizes
FDTD models developed prior to 2009 of sub-ionospheric EM
propagation below 300 Hz, all of which assumed an unmagne-
tized ionosphere.

All of the above 3-D models assumed a simple isotropic
ionosphere. Lee and Kalluri were the first to present a 3-D FDTD
model (in spherical coordinates) to solve Maxwell’s equations as
well as an auxiliary equation describing a cold inhomogeneous
collisional magnetized plasma [84]. This model assumed that

the ionosphere is made up of a plasma that includes only one
charged particle. The most serious drawback of this approach is
that spurious charges were produced due to the un-collocation of
electric fields and current densities, and accordingly, a late-time
instability was generated [34].

A more generalized 3-D model of the anisotropic magnetized
ionosphere was proposed by Yu and Simpson [34] based on
the 2-D model described in [35]. In this model, the ionospheric
plasma may include more than one charged particle. Using this
approach, the plasma parameters may decrease the maximum
allowable time step increment of the model and thus increase the
computational time. The authors extended this model to include
the Earth’s curvature [85].

As a result of the limitations of the model presented in [85],
Samimi and Simpson developed an algorithm based on Boris’s
algorithm [86]. This approach removed the matrix inversions
[87] and requires fewer variables (and accordingly, requires
less memory and runs more than 50% faster than that of [85]).
Additionally, it introduced the possibility of using two time-step
increments (one for Maxwell’s equations, and the other one for
the plasma momentum equation).

Later, Pokhrel et al. increased the computational efficiency
further by introducing the idea of performing singular updates to
the plasma momentum equations (at each Maxwell’s equations
time step). In some cases, this may notably reduce the simulation
time, particularly at low altitudes where the collision frequency
is high [88].

At the same time that [34] was published, another class of
3-D FDTD models for magnetized plasma was suggested by
Marshall et al. [89], [90]. Marshall et al. first employed a local
3-D model in Cartesian coordinates to simulate the interaction of
an electromagnetic pulse (EMP) with the lower ionosphere [89].
The plasma in this model had only one constituting particle, the
electron. In [90], Marshall introduced an improved version of the
model presented in [89]. The improved model was implemented
in spherical coordinates (to account for the Earth’s curvature)
with a plasma model including multiple particles. However,
unlike the global 3-D model developed by Simpson et al. [64],
there was no attempt made to keep the temporal resolution of the
model at the level of the Courant limit near the poles. To alleviate
this problem, the author worked with the 3-D grid placed near
the equator in order to have (almost) uniform grid cells while
preserving the curvature of the Earth.

Itoh et al. [91], Zhang et al. [92], and Gamliel [93] de-
veloped separate 3-D models for the ionosphere. Itoh et al.
modeled the collisional magnetized plasma using a conductivity
tensor, and showed that the proposed model is accurate and
flexible; however, the applicability of the model is limited to
monotonic sources [91]. Zhang et al. employed the current
density convolution FDTD (JEC-FDTD, [30]) to model wave
propagation and absorption in inhomogeneous and anisotropic
plasmas [92]. Gamliel also formulated a new 3-D FDTD ap-
proach (in Cartesian coordinates) to model wave propagation
in the single-species cold magnetized plasma based on the
DI method [93]. The author showed that the temporal reso-
lution of the model is independent of the plasma parameters.
Gamliel’s method includes 24 update equations vs. only the
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TABLE III
COMPARISON OF COMPUTATION TIME BETWEEN TWO METHODS

Fig. 6. 2D electromagnetic scattering model.

Fig. 7. Distributions of (a) Ez , (b) Hx, (c) Hy from FDTD and DL method.

and other parameters remain unchanged. From this table we can
see that, as the computational domain gets larger, the proposed
method becomes more efficient than the reference FDTD.

IV. 2D NUMERICAL EXAMPLES

A. 2D Scattering Problem

Consider a 2D model as shown in Fig. 6, in which the relative
permittivity of background and the abnormal body are 1 and
2, respectively. We select the 1 GHz gauss signal as the source
term, which is located at the center of the computational doamin.
Comparisons between the FDTD and DL method are presented
to verify the accuracy. For the FDTD method, the uniform grid
length is 2 mm and the time step is 1 e-12 s. In the DL method,
the numbers of random sample points are N0 = 2000, Nb = 1000
and Nm = 20 000. The network structure consists of three inputs
(x, y, t), three outputs (Ez , Hx, Hy) and five hidden layers (50
neurons per layer). Fig. 7 shows the field distributions calculated
by these two methods at t = 4 e-9 s. The left and right panels
correspond to the results of FDTD and DL method, respectively.
The agreement between the predicted results and the reference
solutions is excellent, indicating that the DL method is effective.
The relative errors of Ez , Hx and Hy are 1.392 e-2, 1.459 e-2 and

Fig. 8. 2D electromagnetic multi-scale scattering model.

Fig. 9. Computation time of two methods in different fracture thickness.

1.180e-2, respectively. Furthermore, we compare the computing
efficiency of the two methods. It only takes this DL method 0.65 s
to predict the fields. In contrast, it costs approximate 35 min by
using FDTD method.

B. 2D Multi-Scale Problem

Based on the satisfactory results of the previous section, we
also explore the possibility of this method in a multi-scale
simulation. A 2 mm wide and 1 m long fracture is added to
the model, as shown in Fig. 8. The relative permittivity of the
fracture is 1. In FDTD case, the uniform grid length is 0.5 mm
and the time step is 2 e-13 s. For the DL method, we only need
to increase the sampling points of the fracture. Therefore, the
calculation time of DL method will not increase significantly in
the multi-scale simulation. The relative errors of Ez , Hx and Hy

are 2.365 e-2, 2.145 e-2 and 3.046 e-2. The high accuracy shows
that this method is suitable for multi-scale simulation. For the
FDTD method, we usually adopt the mesh refinement approach
to solve the multi-scale problem because of the differences in
the model scale. As a result, the time step must be small enough
to assure the Courant stability criterion, which will increase the
calculation time and memory consumption. However, there is
no restriction on time intervals for the DL method and no need
for additional memory consumption to store intermediate data,
which makes the DL method more efficient than the FDTD
method. Therefore, we compare the computational time of these
two methods in the different fracture thickness in Fig. 9. As
expected, the computational time of the DL method is three to
four orders of magnitude less than that of the FDTD method,
which demonstrates that the DL method is more efficient than
the reference FDTD method in multi-scale simulation.

V. CONCLUSION

We have presented a new deep learning method to
solve time-domain Maxwell’s equations. It directly obtains
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